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Upper bounds are obtained for spin _+ 1 systems. In the case of only nearest- 
neighbor interactions on, for example, the square lattice we obtain fl~.J > 0.3592. 
The method's strength is seen when considering systems with longer-range 
interactions. For example, we obtain fl,.J> 0.360 compared to the previous best 
bound of fl, J>>. 0.345 for the one-dimensional lattice with 1/r 2 interactions. The 
method relies upon an identity between correlation functions and then the use of 
correlation inequalities to obtain the final bounds. 
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1. I N T R O D U C T I O N  

Bounds on the critical temperature T~ for various spin systems have been 
of interest for some time. For  the s tandard  Ising model  with spins equal to 
_+1 and only ferromagnetic nearest-neighbor interactions the best 
numerical results for the upper  bound  remain those established by Fisher (I~ 
in 1967 using results from Fisher and Sykes (2t concerning self-avoiding 
walks. Since 1967 others have established methods  which give upper 
bounds on T~. which, while not  as good  as Fisher's bound  for the s tandard 
Ising model, might be applied to systems with other  spin variables, e.g., 
classical rotators,  (3/ or to systems with more  general interactions, e.g., the 
one-dimensional  lattice with 1/r 2 interactions.(4~ The following method  is of 
the latter type. The bounds  which one obtains from rather simple 
calculations are better than the recent bounds  of S~i Barreto and 
O'Carrol l ,  (5~ Monroe  (6/ and the Bethe approximat ion  result of Krinsky, (71 
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but for the nearest-neighbor systems they are not as good as the 
Fisher-Sykes result. 

It should be pointed out that recently Simon (8) has presented a 
method for computing a sequence of upper bounds on T(. which is guaran- 
teed to converge to the true transition temperature. The method involves 
the calculation of pair correlation functions as does the method to be 
presented here. In addition Aizenman (9) has obtained complementary lower 
bounds on Tc for a general class of spin systems. These methods give one 
the possibility of getting arbitrarily good bounds on Te although the 
amount of calculation needed may be substantial. 

In the remainder of this section we introduce the necessary notation 
and present one identity which is the starting point for the method. The 
following section consists of the method used on nearest-neighbor interac- 
tion systems. This has been done because the use of the method can be 
most clearly seen when applied to these simpler systems and as stated 
above the results are good although not the best. Then in Section 3 we 
conclude by considering those systems with interactions beyond nearest 
neighbors. 

Consider a collection of N lattice sites where on each site there is a 
spin variable a =  _1, the spin on the ith site will be labeled ai. The spin 
interactions are given by 

i < j  i 

where {a} represents a configuration of the N spins. The thermal average 
for a product of the spins is 

<aA>=E aAe P " / E  e #"=Z-' • a,4e ~H (1.2) 
{o} i{~} {~} 

where fl = 1/kt and where 

~A = [ I  ~i (1.3t 
i ~ A  

with A any subset of the N spins. 
One has the identity 

exp [fiJklak at] = cosh (flJkJ [ 1 + Tk~ ak at] (1.4) 

where T~l--tanh(flJkt). Then applying the identity to (1.2) one obtains 

<~A >~t + T~t<~ a~Gt)~ 
<~> : (1.5) 

1 + T~<akat>kt 
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where the subscript kl on the brackets denoting the thermal averages 
denotes a thermal average where the interaction Jkt has been set to zero. 
One may use the identity (1.4) again to delete other interactions, this is the 
starting point for the method discussed in the following sections. A similar 
starting point was used by Thompson (1~ to establish that the mean-field 
magnetization is an upper bound on the true magnetization and later by 
Krinsky (7/to prove the Bethe approximation bound for the magnetization. 

2. NEAREST-NEIGHBOR INTERACTION S Y S T E M S  

We now restrict our interactions to nearest-neighbor interactions with 
all interactions of equal strength and all magnetic field terms of equal 
strength. Furthermore we specify periodic boundary conditions and con- 
sider the square lattice as a specific example although the method works 
for any regular lattice. 

We choose a site and label it as the zeroth site as shown in Fig. la. 

(7, (7  

Cr~ 

C~7 

ca/ ( ; )  

Ic/ (dl 
Fig. 1. System and subsystems used in the analysis of the n.n. interaction case. 
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Then using the identity (1.4) four times so that a o at the end of the four 
applications is no longer interacting with any other spins, we then have 

<0.0 > "C'4- T<04)01,02,03,04 T<03>01,02,03 T<o'2)ol,o 2 T<o-1)Ol 
= + q 4 (2.1) 

B1B2B3B4 B1 B2B3 B1 B2 B1 

where T =  tanh(flJ), where ~ = tanh(fih), and where 

B 1 = 1 + T ( o ' o a  ~ ) o l ,  

B 3 = 1 + T<O'oO-3 >01,02,03 , 

B 2 = 1 + T<o-oO-2 >01,02 

B 4 = 1 -[- T<o-oo-4 )01,02,03,04 
(2.2) 

we want to bound the right-hand side and hence the left-hand side of (2.1). 
To do so we will use the Griffiths, Kelly, and Sherman (hereafter GKS) 
inequalities/1~'12) which are 

(o-A) >~ 0 (2.3) 

- - -  (aAaB>--  ( o ' A ) ( a ~ )  ~>0 (2.4) 

Using these inequalities we have the bound 

4T 
<0-0) ~< ~7 "~- ""~- <G 1 )01 (2.5) 

since by (2.3) all B's/> 1 and since by (2.4) along with periodicity 

<0"4 )01,02,03,04 ~< <0-3 )01,02,03 ~< <0-2 )01,02 ~ <0"1 >01 (2.6) 

We now use the identity (1.4) applying it to the <0-1> Ol term which 
already has the interaction between 0-0 and a~ deleted as in Fig. lb. 
Therefore to free spin ~1 from the remainder of the lattice we need apply 
the identity only three more times to get 

<G0>~<'C-t- 1 t-~-~4T~'c+T<~176 + r(o-6>~176 O l , 1 5 } B S B 6  

where 
B 5 = 1 + T(alas>ol,15, B 6 =  1 + T<G1G6>oI,15,16, 

B 7 = 1 q- T{0-107 >01,15,16,17 

(2.7) 

(2.8) 

Using the GKS inequalities as before we have 

4T 
{O-0> ~< ~ +~11 {Z" + A<O-1 >Ol } (2.9) 
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where we define A to be 
2T T 

A -  .... + - -  (2.10) 
BsB6 B5 

Now we repeat this procedure on (~1)ol  generating the inequality 

4T 
( a o ) 4 Z + N { r + z A + r A 2 +  ... + z A " - I  + A " ( a , ) O l }  (2.11) 

In the limit n --* oo for A < 1 we have 

4T 1 
( a o )  ~<r + - - z  (2.12) 

B 1 1 - A  

This is true for any size lattice and therefore will be true for the infinite lat- 
tice. Then for h ~ 0 ,  i.e., r ~ 0 ,  we have no magnetization for A < 1. 
Therefore for all/~J such that A < 1 no phase transition exists. 

If we bound B 5 and B 6 by one then we have that there is no phase 
transition for f l J > t a n h  l(1/3) which is the Bethe approximation. To go 
beyond the Bethe approximation we must evaluate B 5 and B 6 more 
carefully. We must always be getting lower bounds not upper bounds of B. 
These can be found by explicit calculation of the pair correlation functions 
involved in the B's using small systems since by the GKS inequality 
increasing the size of the system only increases the amount of correlation 
between any two spins. For  the (a~rs )o l , l  5 we use only the nine-spin 
system in Fig. lc and for (ala6)ol,15.~6 we use the nine-spin system of 
Fig. ld. We then get /? , . J> 0.3592. This is to be compared to, for example, 
the bound of Sa Barreto and O'Carroll (5) of 0.3318, Krinsky's (7) Bethe 
bound of 0.3466, and the best bound, that of Fisher and Sykes (~'2) of 
0.3870. 

One could improve these bounds by considering larger systems than 
those shown in Figs. l c and l d although this would quickly involve sub- 
stantially larger calculations. As mentioned in the introduction, Simon has 
developed an algorithm using pair correlations to get a sequence of upper 
bounds converging to the true critical temperature. As in our method to 
obtain better and better bounds one needs to consider larger and larger 
systems. The only numerical result of the Simon procedure is his bound (8) 
of tic J> 0.3242 for the system considered in this section. 

3. N O N - N E A R E S T - N E I G H B O R  I N T E R A C T I O N  S Y S T E M S  

The procedure discussed in Section 2 is most effective when dealing 
with systems where interactions beyond nearest-neighbor interactions are 



254 Monroe 

present. Here we obtain the best bounds available with a substantial 
improvement in most cases, e.g., the 1/r 2 one-dimensional system. We first 
present results for a square lattice with nearest-neighbor (n.n.) interactions 
J1 and next-nearest-neighbor (n.n.n.) interactions Jzwith periodic boundary 
conditions. We for simplicity drop the magnetic field from the beginning. 

We again label a zeroth site along with its neighboring sites as in 
Fig. 2a. Using the identity (1.4) eight times and then the GKS inequalities 
we have 

_< 4T1 4T2 (3.1) 

where T , =  T, with T and B1 as in the preceding section, and 
T2 = tanh(flJ2). Now we reuse the identity (1.4) seven times on ( ~ t ) o l ,  
three times on the n.n. interactions and four times on the n.n.n, interac- 
tions. Also we use (1.4) seven times on (~5)o5, four times on the n.n. 

\ 
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/ 

Q 
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C 
\ 

C 
\ 

0-8 (17, O'5 

Fig. 2. 

(C) 

System and subsystems used in the analysis of systems with interactions beyond n.n. 
interactions. 
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interactions and three times on the n.n.n, interactions. This along with the 
GKS inequalities allows us to obtain 

-< 4T1 E3T1 ( a l ) o l  + 4T2(~ )05] (0"0)-,~ B1 

4T2 
+ ~ E4Tl(~rl)Ol + 3 r 2 ( a s ) o s ]  (3.2) 

We can repeat this procedure as many times as we like but the expressions 
quickly become very complicated. Thus we will treat two different cases 
one with T1 r T2 and one with T1 = T2. For  the latter case we can repeat 
the process n -  1 times to obtain 

-<8rl (yv~)"(ao) (3.3) 
(0-0)-.~ B1 

Now if n ~ oo we get no phase transition if 

1 
tanh(fiJ~ ) < 7 (3.4) 

which gives the bound fi,J1 > 0.1438. 
When T 1 5 & T 2 because of not being able to simplify the expressions we 

repeat the procedure only three more times after (3.2) obtaining 

.< 1 1-324T~ + 2592T 4 T2 + 6688 T~ T~ + 6688 T 2 T 3 ( a 0 )  "~B1 

+ 2592T~ T~ + 324T~] ( a o )  (3.5) 

Looking at a particular case of T1 ~ T2, e.g., J1 = 4J2, which is the first two 
terms of a 1/r 2 interaction, then (3.5) gives the bound tic J1 > 0.2361 where 
to compute Blwe use the nine spin system as shown in Fig. 2b. 

We can make two comparisons of these bounds. First, Domb and 
Dalton (131 for J1 = J 2  estimate ficJ to be 0.1901 and for J1 = 4J2 Dalton 
a n d  W o o d  (14) estimate that flcJ is 0.328. Both estimates are based on series 
expansion methods. Second, Fisher's method can be used to obtain bounds 
for systems with interactions beyond the n.n. interactions and the result is 
that there is no phase transition for all /~J such that the following 
inequality is satisfied: 

tanh(flJr) - min[tanh(flJr)  ] < 1 (3.6) 
r 

where the sum is over all sites interacting directly with the zeroth site. For 
J~ =J2  one has tic J>0 .1438  and for Jl=4J2, tic J>0.2132. One word of 
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caution is appropriate at this point. For  the case of n.n. interactions only 
(3.6) gives the Bethe approximation T c as a bound and not the result men- 
tioned in Section 2. To get the result of Section 2 the self-avoiding walk 
results of Fisher and Sykes must also be used. Their results, however, do 
not apply to non-n.n, interaction systems. 

We now consider an infinite-range interaction of any form and restrict 
ourselves to a one-dimensional lattice of N sites with periodic boundary 
conditions and again choose a zeroth site. We can use the identity (1.4) to 
obtain 

T1 (o-1) 1 T l ( O _ l  >11 T 2 ( 0 2 )  112 
( a o )  = - -  + + F " '  

B1 B1Bll BIBltB112 

rn<o'n > 11223 ... n 
+ + ... (3.7) 

B1BH B112 �9 �9 �9 811223... n 

where the subscripts 1, 2, 3,... represent the n.n., n.n.n., third n.n.,.., interac- 
tion of ~r o which has been deleted and a repeated number means both 
interactions at that distance have been deleted. Finally T, = tanh(flJ,) with 
n representing the nth nearest neighbor. By the symmetry due to the 
periodic boundary conditions and the GKS inequalities we have 

2T1 +2T2 2T3 + 2 T .  < a o ) . +  " '  (3.8) 
( 0)1 ' 

B1 

Now for each term in the above expression we can go through a procedure 
deleting the remaining interactions with the zeroth site. Then again using 
the symmetry of the system as well as the GKS inequalities we have 

_<2T~ 
(0"0)-,,: BI { T l ( ~ 1 7 6 1 7 6 1 7 6 1 7 6  .- .} 

2T2 {2T, (Cro) , + T2<o-o> 2 -1- 2T3(oo)  3 + . . .} + --. 

2Tn 
+ ~ { 2 T l @ 0 ) l + 2 T 2 ( a 0 ) 2 + " "  + T n ( a o ) n + ' " } + " "  (3.9) 

We repeat this procedure one more time. This time we replace all (~o)n's  
with ( a o )  and then collect terms to get 

8 3 8 ( i  z 
<0-0> ~ ~ n=l *"i \ n=  1 n 1 / l k n = l  

(3.10) 

For  all flJ such that the term in parenthesis is less than 1 we have no 
phase transition. We now look at the special case where we have 
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specifically the 1/r 2 interaction. The term in parenthesis is itself bounded 
above in the following manner: we used the upper bound for the first and 
third terms found by taking the first three terms in the power series expan- 
sion of Th and Th 3 and we used the lower bound of the second term found 
by taking only the first two terms of Th and Th 2. For Blwe use the six spin 
system shown in Fig. 2c. We then have Be J >  0.360. Fisher's result gives 
/~,J>0.310. Very recently S i u  (4) has proven bounds on the critical tem- 
perature and has examined in particular the l / r  2 one-dimensional model 
for which he obtains the bound tic J>0.345 which was the best known 
result. The best estimate for the critical temperature of this system is 
fi~+J= 0.633 obtained by Bhattacharjee et  al. (is) 

In conclusion we note that through the calculation of correlation 
functions in spin systems of small size we have a method of obtaining 
upper bounds on T,. for many spin _+ 1 systems. For the specific systems 
considered here the bounds obtained are the best numerical bounds we 
know of except in the nearest-neighbor case. All bounds have been 
obtained through simple calculations done by hand. 
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